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WEIGHT, DENSITY AND MATTER:

A STUDY OF ELEMENTARY SCHOOL CHILDREN'S REASONING ABOUT

DENSITY WITH CONCRETE MATERIALS AND COMPUTER ANALOGS

Introduction

The concept of the density of a material has an important role in

elementary and secondary school science curricula. Students are taught

about a variety of phenomena which require some understanding of density to

explain: for example, how various materials differ from each other, what

happens to materials when they change state, why objects made of certain

materials are heavier for their size than objects made of other materials,

why some objects sink in liquids while others float. Further, density is

the first intensive physical quantity students encounter that can be

understood in terms of an underlying model, the particulate theory of

matter. This theory holds that matter is composed of a finite number of

discrete and uniform "bits", each of which weighs something; that the

weight of an object is a function of the number of bits; and that the

density of the object is a function of how closely packed the bits are.

This model is a major theoretical achievement--built on both observable and

unobservable properties and entities. Teaching students about density,

thus, provides them with explanations for a range of phenomena as well as

an opportunity to develop their understanding of an intensive quantity and

to engage in real theory construction.

Teachers have reported, however, that density is a difficult concept

for students to grasp. Our project explores why this should be and whether

there are some simpler, more accessible notions which can serve as the
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basis for building a concept of density in students' minds.

One reason that the notion of the density of materials may be difficujt

for students to understand is that density is an intensive quantity.

Intensive quantities are quantities that generally have a ratio structure:

weight/unit volume; number of candies/bag; number of children/classroom.

Students may simply have difficulty representing quantities with a ratio

structure. in support of this hypothesis, Quintero found that students

through the fifth grade had trouble giving visual depictions of simple

intensive quantities, such as "14 candies per bag" or "20 children in each

classroom." (Quintero, 1980). Additionally, students may have difficulty

with density because it is an intensive quantity which they cannot directly

perceive. Although they can perceive an object's weight, size, and the

material it is made of, the density of the material is a quantity which

must be inf'rred from knowledge of an object's weight and volume.

Limitations in students' conceptions of matter, material kinds, and weight

may also prevent them from constructing mental models in which the

densities of different materials are directly represented. For example, if

students think of matter as fundamentally continuous rather than

Particulate, they cannot represent the density differences of materials in

terms of the crowdedness of underlying particles. Other intensive

quantities, such as the crowdedness of an array of dots, may be easier for

them to grasp because they can directly perceive dot crowdedness. In

support of this hypothesis, Quintero found that highly visualizable

intensive quantities were understood better by elementary school children

.

than ones that were less visualizable. If this is true, then elementary

school children may be helped to understand density better by providing

them with an appropriate visual model.
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Our work this year lays the groundwork for designing ways to teach

students about density. The main goal of our studies has been to determine

whether students can understand a visual analog of density (depicted in

computer displays) more easily than the notion of the density of materials

(inferred from manipulating real materials). If they can, then the visual

analog can provide a base on which to build a notion of density. Our

strategy has been to Present children with two identically structured sets

of problems: one with real world objects and the other with computer

arrays. To date, we have completed two studies, both of which compare

children's abilities with the computer displays and real world objects.

The studies differed, however, in the exact way the intensive quantity was

visually portrayed in the computer displays and in the way children's

reasoning about intensive quantities was probed.

In our first Pilot study (Smith, 1984, the first Technical Report of

this group), we worked with students from grades I, 2, and 3. The density

task involved presenting them with pieces of steel and aluminum of varying

sizes and weights. Students were shown that a piece of steel was heavier

than a piece of aluminum the same size, and that a large piece of aluminum

equaled a small piece of steel to weight, so that they could infer that

steel was denser than aluminum. They were then asked to predict whether

two objects could weigh the same, drawing on their knowledge of the

relative sizes of the objects and the materials they were made of. Students

were given a variety of problems, the most critical of which involved

presenting the child with a piece of aluminum which was three times larger

than a piece of steel. This latter type of problem was included to

determine if they interpreted "heavier" In the generalization "steel is

heavier than aluminum" as absolutely heavier or as denser. If students

7
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interpret heavier as absolutely heavier, they should predict that the steel

would be heavier on these problems. If, however, they correctly

Interpreted it as denser, they should realize that extensive differences in

the objects can compensate for intensive differences and that the two

objects could weigh the same.

The computer problems in the first pilot study were similar in

structure to the problems with steel and aluminum. The computer display

presented two shapes--one outlined in purple, and the other in green--of

varying sizes . Each shape was filled with dots uniformly spaced. The dot

density in the green shape was, however, four times the dct density in the

purple shape. Again, students were given preliminary experience with the

shapes to learn that the green shapes were more crowded with dots than the

purple shapes. They were then asked to predict from knowledge of the

outline color of a shape and the relative sizes of the shape, whether the

shapes would have the same number of dots in them when they were filled in.

We hypothesized that children would be able to describe and reason

about dot crowdedness better than the density of materials because it was a

directly perceptible intensive quantity. Our results only partially

supported our hypothesis. We found that children did use more precise

language for talking about the computer displays than the real objects

(i.e., children referred to an intensive quantity--crowdedness, number of

dots per row--in describing the differences between purple and green

shapes; in contrast, children used the ambiguous word "heavier" in

describing the differences between steel and aluminum). However, despite

the superiority of their language for talking about the intensive quantity

in the computer case, children at all ages actually did better making

predictions about the weights of the steel and aluminum objects than they
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did making predictions about the number of dots in the purple and green

shapes.

There were at least two possible explanations for the greater

difficulty of the computer problems. First, one could argue that the two

tasks vary in familiarity. Children may have had previous experience with

steel and aluminum objects, but not with the purple and green computer

shapes. If we had given children more time to familiarize themselves with

the computer materials, their performance might have dramatically improved.

Second, one could argue that the children used different strategies on the

two tasks. In our previous technical report, this is the hypothesis we

favored. in particular, we argued that children approached computer

problems searching for an exact numeric solution. Their Justifications

indicated that they were asking themselves how many times bigger a purple

shape had to be to have the same number of dots as a green shape. The

problem was that they were coming up with the wrong number: they expected

the shapes to have an equal number of dots when the purple shape was two

times bigger rather than four times bigger. Consequently, when they were

presented with a purple shape that was four times bigger than a green

shape, they said that the purple shape would have more dots. This was

scored as an error, but in fact seemed to result from a sophisticated line

of reasoning, a measurement strategy whose only error was an inaccurate

estimation of the difference in dot crowdedness of the two shapes. if

children had been given a wider range of problems (in which the purple

shape was two, three, and four times bigger than the green shape), they

might have shown the sophisticated pattern of judging that the shapes would

have the same number of dots when the shapes were in a 2 to I ratio, and

then judging that the purple shape would have more dots for larger ratios.

9
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In contrast, children did not seem to take a numerical approach in

reasoning about the steel and aluminum objects. They noted that steel was

much heavier than aluminum, but did not attempt to say how much heavier.

When they were presented with a piece of aluminum three times larger than a

piece of steel, they said that the two could be equal in weight. However,

judging frcn their justifications, they did not seem to have come to the

conclusion that steel was always three times denser. They seemed only to

reason: the aluminum is much larger, but the steel is much heavier, so they

could be equal. They might also have Judged that pieces of aluminum two or

four times bigger than steel could also be equal to the steel in weight. If

this interpretation of their responses is correct, then children were using

a more quantitative strategy with the computer problems than the steel and

aluminum ones.

In our second pilot study, we modified the reasoning task we gave to

the children so that we would be bett'T able to infer the strategy children

used on the computer and real world objects problems from their patterns of

judgment. In particular, we now gave children a wider range of problems:

problems where the large object was so much larger that It was heavier/had

more dots in spite of its being less dense, problems where the two

quantities exactly compensate, and problems where the larger object was not

enough larger for the two quantities to compensate exactly (see Table l).

Children were exposed to all types of compensation problems in the initial

exploration period on each task and were asked to find the pairs that had

the same weight/number of dots. Thus, we restructured the procedures in

ways that would encourage them to think about the intensive differences

more quantitatively on both tasks. We predicted that with this new version

of the procedures, children would be more successful with the computer

10
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displays than the steel and aluminum pieces.

In addition, we decided to develop another computer model that Would

overcome the limitations of the one used in the first pilot study. In the

original computer model it was hard to correctly quantify the difference in

dot densities of the two shapes. Each dot should be conceived to bo at thtr

center of an imaginary box, where the area of the box surrounding a purple

dot was four times the area surrounding a green dot. However, if children

conceived of an area bounded by the dots themselves, and then counted the

number of dots in each area, they would not find a 4 to 1 ratio between the

dot densities of the green and purple shapes (see Figure la). In this case,

they get a 2.5 to 1 ratio. This is because they have not really identified

comparable areas. When they consider the dots as being in the center of an

imaginary box, they find that the four purple dots are included in a larger

area than the nine green dots (see Figure lb). Thus, they need to aJd

imaginary boxes to the green shape to make the areas truly equivalent, and

then they would get a 4 to 1 ratio (see Figure lc). This may, in fact, be

one reason so many of them extracted the wrong numerical rule. Further, our

first computer display provided an incorrect model of the density

differences of materials at an atomic level.1 It is not the case that

denser materials have more closely packed atoms than less dense materials.

Rather, a denser substance has heavier atoms than a less dense substance

(i.e., more mass in the nucleus).

1We are indebted to Sylvia Shafto for reminding us of this problem with

our model.

11
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In our new computer model, there are three variables: number of

dots/bunch (some have 3 dots/bunch; others 1 dot/bunch); total number of

bunches in a shape (bunches are equally spaced, independent of huncn size),

and total number of dots in a shape (see Figure 2). In this model, all

three quantities including the intensive quantity are easy to quantify (3

dots/bunch ,. 1 dot/bunch). Further, the model provides a more correct

representation of the density differences of materials at the atomic level

(bunches correspond to the nuclei of individual atoms which vary in total

number of particles). Indeed this is a more powerful model than our

earlier one, since intrinsic differences in material kinds are represented

separately from the overall spacing of bunches. Thus, we believe this

model can potentially helo children understand a wider range of problems

involving density.

The main purpose of our second pilot study was to test the hypothesis

that children would be more successful reasoning quantitatively with the

intensive quantity in our new computer model (#dots/bunch) than with the

intensive quantity of density of materials. We hypothesized that because

the intensive quantitles in the computer display were directly perceptible,

children would be more likely to attempt to quantify them and would

frequently extract the correct numeric rule. In contrast, because they

could not directly perceive the densities of steel and aluminum, they

should make fewer attempts at explicit quantification. Further, without

such a visual referent, they should have more trouble using numeric

information to extract a correct rule about the ratio of the densities.

That 1s, when they are shown that a steel object weighs 3 units and a same

size aluminum object weighs 1 unit, they snould still have difficulty

concluding that steel is three times denser than aluminum. If these

19
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predictions are confirmed, it suggests one way in which having a visual

model of an intensive quantity might aid in reasoning about density.

There were three additional purposes served by the second pilot study.

First, we wanted to gather more information about how children

spontaneously conceptualized weight and density. Do they think that all

matter has weight? What 15 their concept of the internal structure of

materials-- what kinds of pictures do they draw (if any) when asked to

explain why steel is heavier %,nan aluminum? Second, we wanted to sample

children across a broader age range (grade 2 through 6) than we did in

pilot study 1 and we wanted to include children of more diverse ability

levels. Finally, we wanted to probe children's ability to see analogies

between the computer model and real world objects.

Methods

Subjects

The study was conducted in a Watertown, Mass. elementary school. The

school philosophy might be described as goal-oriented and progressive: the

pupils were encouraged to take on responsibilities (e,g. school newspaper)

and were actively involved in diverse curriculum-enrichment activities and

events. Children of all grade levels also participated in a computer class.

Most of the attending population seemed to be from a middle socio-economic

background.

Students from grades 2,4 and 6 were selected by their respective

teachers to represent a range of ability levels. Teachers were instructed

to form pairs of students of equal general ability; given this constraint,

they were also encouraged to include en equal number of boys and girls. The

13
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distribution of 32 subjects by grade, sex and ability level is shown in

Table 2. The subgroups in Grades 4 and 6 contain only 10 pupils because 4

subjects served to pilot the testing procedures and their protocols were

not included in the data analysis.

The science curriculum in this school was based on the textbook series

Accent on Science (Charles C. Merrill, 1983). The grade 2 children had not

been exposed in any formal way to the concepts addressed by the study. The

grade 4 children had been introduced to the particulate model of matter and

phase changes in the previous year ("Matter and its Changes"), but had not

yet had the fourth grade unit that dealt with the densities of different

rocks. The grade 6 students had received the most instruction in these

concepts. In their previous unit in Grade 5 ("Classifying Matter"),

density was introduced as an object's mass divided by its volume with

illustrations of same-sized containers filled with different materials; in

this unit the particulate model of matter was used to explein phase changes

in a given material, but was not directly linked to density differences of

different materials. The grade 6 unit ("Interactions of Matter") gave more

deails on the atomic structure of matter, the classification of elements

and the combination of atoms.

Overall Design

Subjects were given three tasks in three separate sessions. The

steel/aluminum and computer model tasks were parallel in structure and were

given in counter-balanced order. Half of the children were given the

steel/aluminum problems in the first session and the computer model

problems in the second session. The other half of the children (matched for

grade and ability level) were given the computer model problems in the

first session and the steel/aluminum problems in the second session. There



was a minimum of one day between sessions 1 and 2. In both the

steel/aluminum and computer model tasks, students were given preliminary

experiences to allow them to infer that steel is denser than aluminum and

to learn that green shapes have more dots per cluster than red shapes.

They were then given 12 test problems in which they had to predict whether

two objects could weigh the same based on knowledge of the relative sizes

of the objects and the material each was made of and to predict whether two

shapes could have the same number of dots based on knowledge of the

relative sizes of the shapes and the outline color. The playdough and

probe task was the third task which always was presented in the last

session. This task explored children's beliefs about weight and density

and probed their ability to see an analogy between the computer model and

the steel/aluminum tasks.

Stimuli

Steel and aluminum pieces

A set of steel and aluminum cylinders of varying lengths were designed

for the study. The pieces were 1.5 inches in diameter for ease of handling

by,the child. The steel used was approximately 2.9 times heavier than the

aluminum. Even though steel is darker, the two metals were also

distinguished by a color sticker on top of each piece (blue for steel and

yellow for aluminum) to facilitate proper identification by subjects. Each

piece was also identified by a letter on the bottom for the experimenter's

convenience.

The purpose of the preliminary problems was to allow children to infer

that steel is denser than aluminum. Three steel pieces (2, 3, and 5 inches

in length) and three aluminum pieces (2, 5.8, and 8.7 inches in length)

were used. These pieces could be arranged in different pairs: for example,
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one same size pair made of different materials, two pairs in which the

larger aluminum weighs the same as the smaller steel, one pair in which the

larger aluminum is heavier than the smaller steel, and one pair in which

the larger aluminum is lighter than the smaller steel. Since students

were allowed to weigh and lift the objects during this phase of the task,

different cylinders were used in the test phase to insure that they were

not answering based on the remembered weights of specific items. Four new

steel pieces (I, 2.5, 4, and 6 Inches in length) and six new aluminum

pieces (1, 2.9, 4 , 5 , 7 , and 11.6 inches in length) were used to

construct the twelve pairs of objects used in the test phase. For each

pair, the subject was asked to predict if the two pieces could weigh the

same and, if not, which piece would be heavier. There were six types of

pairs with two instances of each type. Table 1 lists the six pair types,

along with the the exact dimensions of the instances for each type.

Computer model

Computer analogs of the steel and aluminum pieces were programmed on an

IBM microcomputer. These consisted of rectangular shapes that could be

called up on the screen as empty outlines or filled with dots (see Figure

2). The matrix consisted of 4 equally spaced points across the width of

the rectangle. The red shape stood for the aluminum piece and was filled in

with one dot at each matrix point whereas the green shape stood for the

steel piece and was filled in with a bunch of 3 dots disposed in a triangle

at each matrix point. Thus a green shape of equal size contains three times

as many dots as a red shape just as a steel piece of equal size weighs just

-about three times as much as the aluminum piece.

During the preliminary phase of the task, students were allowed to call

up pairs of filled-in shapes. When a filled-in shape was called for, an

16
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empty shape first appeared on the screen and the rows of dots successively

filled in at a fairly rapid rate. This allowed children to check which

shape had more dots either by visual inspection or by counting. Because

feedback was given during the preliminary phase, different size shapes were

used during the test phase. In the test phase,
children were only

presented with shapes in outline form to test their ability to make

predictions about whether two shapes could have the same number of dots.

The number of rows in the computer shapes could be varied to match the

different heights of the respective
metal pieces on a scale of 1 row per

inch. In this way, computer pairs were constructed to be exactly analogous

to the pairs used in the steel and aluminum task (see Table 1 again for

description of exact dimensions of the different pair types).

Other materials

A postage scale was used in the steel and aluminum task. Numbered

stickers were placed on the pound intervals to facilitate reading of

weights. This scale also served as a back-up instrument in the conservation

task when the child did not acknowledge the weight of the material used. In

the computer task, a reminder card (showing a red shape with single dots

and a same size green shape with bunches of 3 dots) was placed near the

screen. During the exploration period, a card showing coloured outlines of

the shapes that were
available and an instruction card were posted. Another

card with two empty outlines of equal size, one red and one green, was also

used as a final probe at the end of the preliminaries. Commercial colorless

playdough was used in the conservation task. Finally, white sheets of paper

and a set of 8 colored markers were used in the drawing task.

Procedures

The subjects were seen individually by two research assistants. One



-14--

assistant presented the various tasks to the children. The other assistant

recorded their responses and noted some of their reactions.(The complete

interview protocols are contained in the Appendix).

Steel and aluminum task

Preliminaries. The preliminaries introduced children to the tasks so

that they became familiar with the materials and worked out a solution to

the problems at least on a trial and error basis. This part of the

procedure involved several steps: three problem presentations were followed

by an exploration period and then by further probing.

After some greetings and introductory remarks ("1'11 be showing you

some metal pieces I want you to look at carefully"), the first pair ($0)

was presented to the children. They were invited to handle the pieces and

to make a prediction about their relative weights ("Do these pieces weigh

the same?"); they were then allowed to check their response on the scale.

Once the children acknowledged that the steel piece was heavier, the

examiner probed for an explanation: "These pieces are the same size but

they don't weigh the same. How can that be?" Children were then told that

the pieces were made of steel and aluminum and it was explained how they

could be visually distinguished. Subjects' previous knowledge of these

metals was also checked. Two more problems ( II. 1111) were presented.

Children were first asked to make a prediction and then were allowed to

check their prediction.Their reasons for their predictions were also

explored.

Next, all the preliminary pieces were placed in front of the child.

Children were told that they could explore these objects as they liked

(e.g., compare the weights of different pairs),and that afterwards, they

would be shown new pieces of steel and aluminum that they would not be

18
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allowed to touch. Once children had exhausted their curiosity, they were

asked to find the steel and aluminum pairs which were equivalent in weight

(there were two such pairs). Children were allowed several trials and were

helped if necessary. Once the pairs had been located, children were asked

to explain how they had identified such pairs. Finally, a 2 inch piece of

steel and a 2 inch piece of aluminum were placed on a scale. Children saw

that the steel weighed three units and the aluminum Ileighed one unit. They

were then asked directly how much heavier the steel object was than the

aluminum object.

Test phase. From this point on, children were not allowed to handle or

weigh the pieces but had to make predictions about their relative weights

by observation of the two pieces placed in front of them. "Here is a piece

of steel and a piece of aluminum. Could these pieces weigh the same? if

not, which one is heavier?" The task included 12 problems, two of each of

the six types previously described. On four problems, three of which were

compensation ones, children were asked to explain their prediction.

The Computer Model Task

Preliminaries. The computer preliminaries served the same purpose as

in the previous task and closely followed the sequence of steps described

above. The first pair ( ) was presented in filled-in form.

Children were asked which shape had more dots and helped to notice that the

green one had more, following which they were probed for an explanation:

"The shapes are the same size but they don't have the same number of dots.

How can that be?" It was then pointed out that the green one had more in a

bunch.

For the next two problems (1] 1110), children were first Invited

to make predictions about the relative number of dots from the empty

19
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outlines and queried for their reasons. After the probes, the shapes were

filled in with dots so that children could count them to check their

answers. Children were also shown the model card beside the screen as a

reminder that the red shape was always filled in with one dot per bunch and

the green one with three dots per bunch.

Next, children were told they could play with some of the shapes (a

card indicated which ones) and were instructed how to put them up on the

screen. Once they had satisfied their curiosity, they were shown a card

with outlines of different size red and green shapes and were asked to

Point to the pairs with equal numbers of dots. Children then checked their

predictions by calling up these shapes on the computer until they found the

two pairs which had equal numbers of dots. Finally, children were shown a

2 row red shape (with 8 dots) and a 2 row green shape (with 24 dots) and

were asked how many more dots were in the green shape than the red shape.

The Test Phase. The corresponding computer analogs were presented in

the same order and in the same manner as in the steel and aluminum task.

Empty outlines were called up on the screen and subjects were asked: "Here

is,a red shape and a green shape. Could these shapes have the same number

of dots? If not, which one has more?" The reminder card was posted during

the task but children were not allowed to check their answers. Children

were asked for justifications on four of the 12 problems, three of which

were compensation problems.

The Playdouqh and Probe Tasks

The Conservation Task. A medium-sized piece of playdough was brought

out. Children were asked if it weighed anything and then asked if it still

weighed something when it was not held. Children helped the experimenter

flatten the ball into a pancake shape and were asked if it still weighed



-17-

the same when flattened as it did before and whether it still had the same

amount of stuff in it. The ball was reshaped and broken into little pieces;

children were asked whether the pieces together weighed the same as the

ball. A tiny piece was then broken off and children were asked whether

this piece would weigh anything, even if only a little bit. For all

questions, children were asked to explain their judgement.

The Probe Drawing Task. A 4 inch piece of steel and a 4 inch piece of

aluminum were brought out and children were asked: "What is it about the

steel that makes it heavier?" Children were then invited to imagine the

tiniest piece of steel and aluminum and to draw what they might look like

inside. The drawing was then discussed with the subject for clarification.

The Analogy Probe. The reminder card showing a red shape filled with

single dots and a green shape filled with bunches of dots was brought out

and children were progressively queried about the analogy between the steel

and aluminum pieces and the computer shapes. Do the shapes remind them of

anything? Do they see any connections between the two tasks? Could the

steel and aluminum pieces look like the display of dots inside and if so,

which shapes would match with the respective metals? The plausibility of

this analogy was checked by asking children if the dot display helped them

understand why steel is a heavier kind of material than aluminum. A brief

wrap-up explained the purpose of the study to the children and tested their

acceptance of the particulate model: "Some people say that steel and

aluminum pieces are made up of small bits of stufF like the dots we saw on

the computer. Heavier kinds of stuff have more bits in a bunch but they

have the same spaces between bunches. Does that seem like a good

explanation of why steel is ,a heavier kind of stuff than aluminum to you?"
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Results and Discussion

Predictions task: steel and aluminum pieces vs. computer analogs

Three aspects of children's performance in these two tasks were

analyzed and compared: (a) the language used in describing the differences

between steel and aluminum and red and green shapes; (b) the pattern of

error on the predictions problems in the two tasks and (c) the

justifications of predictions in the two tasks.

Lelguage used for describing the differences between steel and aluminum

objects and red and green shapes.

In the preliminary problems of the predictions task, children were

asked to expla;n why two objects (shapes) of the same size had different

weights (number of dots) and why two objects (shapes) of different size had

the same weight ( number of dots). In answering these questions children

typically appealed to some differences between steel and aluminum objects

(materials) and some differences between red and green shapes. Tables 3

and 4 show the main ways children of different ages talked about these

differences in the two tasks.

In the computer model problems, there were two main ways that children

talked about the differences between the red and green shapes: (a) the

green shapes had dots that were closer together (or in bunches) while the

red shapes had dots that were more spread out (or in singles); and (b) the

green shapes had 3 per bunch (group, set, etc.) while the red shape had

Only Iin a group (singles). In both cases children were referring to an

intensive aspect of the arrays which could be quantified: the closeness of

the dots, the number of dots per bunch. In the latter case, however,

children explicitly acknowledged the ratio structure of the quantity'(#
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dots oer bunch) and assigned a specific magnitude. Table 3 shows that grade

2, 4, and 6 children talked about the arrays quite similarly. At every

grade, almost all the children characterized the difference between red and

green shapes in terms of an intensive quantity (dot closeness, # dots per

bunch). Further, the majority acknowledged the ratio structure of this

quantity and assigned it a specific magnitude. The two children who say

only "the green has 3 dots, the red has 1 dot" are probably trying to say

the same thing, although they do not verbally mention the denominator

(bunches). Only two of the youngest children do not make any reference to

an intensive quantity. Instead, they say that the difference between the

red and the green is that the green has triangles while the red has dots.

Note, however, that even these children are focussing on the internal

structure of the red and green shapes and describe an intensive difference.

In problems with concrete materials, there were four main ways that

children talked about the differences between steel and aluminum: (a) steel

is heavier than aluminum; (b) steel is stronger/fuller than aluminum; (c)

steel is a heavier material than aluminum; and (d) steel is a denser

material than aluminum. Table 4 shows that there are clear age changes in

how children talk about the difference between steel and aluminum. Grade 2

children almost always talk about the steel as being heavier, stronger

and/or fuller than the aluminum, whereas grade 4 and 6 children typically

talk about steel as being a heavier, denser or more tightly packed material

.

than aluminum (X
2=10, d.f.=2, p=(.01).

These results highlight two ways our language for talkfna about the

density of materials is ambiguous: (1) the word "steel" can refer to

obiects made of steel or the material steel; and (2) the word "heavy" can
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refer to absolutely heavy, heavy for size, or dense. With increasing age,

children have a less ambiguous, more precise way of talking about density:

first specifying that they are referring to differences between steel and

aluminum at the material level, and still later specifying that this is a

difference in density and not simply weight. However, because of the

ambiguity of the words they use, it is hard to know what most of the

younger children are intending to refer to without further information. It

is possible that children who say that "steel is a heavier material" or

even that "steel is heavier" really mean to say that it is a denser

material but do not yet have the language for expressing this idea.

Children's actual pattern of predictions on the items where size and

density vary inversely will bear on whether they distinguish weight and

density.

At this point, however, we can conclude that thei'e are at least two

important differences in language used on the two tasks. Children have more

Precise language for talking about the intensive quantity in the computer

model task; in contrast children must stretch their language for talking

about the extensive quantity "weight" to talk about the intensive quantity

"density" in the steel/aluminum task. Second, children are more aware of

the ratio structure and the specific magnitude of the intensive quantity in

the computer mode( task. No child talked of the steel objects as being

heavier for their size in the steel/aluminum task, nor in the early stages

ventured a guess as to how much denser the steel was.

Patterns of judgements: steel and aluminum pieces vs computer analogs.

Children made virtually no errors on the problems where size and the

intensive quantity directly varied (I El) or on the problems where one

quantity was held constant while the other varied (Damp) for either
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task. In particular, 28 of the 32 children had perfect patterns of

judgement on these six problems in the computer model task and 29 of the 32

children had perfect patterns in the steel and aluminum task. Only cne

second grader made errors on these problems for both tasks: systematically

judging on the basis of size in the computer model task and systematically

judging on the basis of kind of stuff in the steel/aluminum task (she erred

by judging that objects in the ( ED) pairs must have the same weight).

The other five children made only one error on the six items for one task

and made perfect predictions for the six items in the other. Thus, in

general, children of these ages can simultaneously consider both quantities

in making predictions on these simple problems.

Children made many more errors on the six compensation problems where

size and density varied inversely. There could be two quite different

reasons children made errors on these problems. First, these problems

require that children correctly conceptualize density (dot crowdedness) as

an intensive quantity and realize that extensive differences between two

objects can compensate for intensive differences. If children interpret

"steel is heavier" as "steel is absolutely heavier than aluminum", then the

child should not realize that a large aluminum object can equal a small

steel object in weight. Instead, whenever they consider the generalization

about the heaviness of steel, they should Judge that the small steel object

will be heavier. Second, these problems require that children understand

quantitatively how the two quantities compensate. To have a perfect

pattern of judgment on these items, children must realize that the two

quantities exactly compensate when the objects are in a 3 to I ratio.

Careful examination of children's patterns of judgement on these six items

should therefore provide clues as to the source of difficulty.
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Children were categorized as showing one of four patterns on the

compensation problems. Recall that compensation problems are those where

the less dense piece is larger in size. There are three types of pairings

in the compensation problems: (a) those where the larger member of the pair

is heavier (has more dcts); (b) those where both members are equal in

weight (number of dots); and (c) those where the smaller member is heavier

(has more dots). Children with perfect (or exact compensation) patterns

correctly predicted the weights/# of dots on all six problems. Since there

are two Items of each type, a perfect pattern would be: LL/EE/SS. These

children clearly realized that the two quantities exactly compensate only

,:hen in a 3 to I ratio.

A second group of children made some errors but had patterns which

showed their responses varied systematically as a function of ratio

differences. These patterns were called ratio sensitive compensation

patterns. To be credited with this pattern, the subject's responses had to

meet two criteria. At least two kinds of responses among the three that

are possible had to be given and the ordering of the answers had to reflect

a systematic direction (e.g., from picking the larger piece for the larger

ratio differences to picking the smaller pieces as the ratio differences

decreased). However, this transition could occur within a given ratio size

(e.g., LL/(L)(S)/SS or LL/(L)E/(E)S ) as we.1 as between different ratio

sizes (e.g., LL/(L)(L)/SS or LL/(L)(L)/(E)(E) ).

A third group of children showed non-systematic compensation patterns.

These children are credited with appreciating that size differences In

.objects (shapes) can compensate for intensive differences because they all

made some "could be equal" in weight (number of dots) judgments on these

Items. Given that these children were perfect on the six noncompensation
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problems (and hence never made the judgment that "they could be equal" on

any other type of item), it seems likely that these judgments reflect some

understanding of compensation. However, these children did not

systematically vary their responses as a function of ratio differences.

Some of the children judged that the objects "could be equal" on at least

five of the six compensation problems. Others used several different

responses, but not in as systematic ways as the children with exact

compensation and ratio sensitive compensation patterns. For example, they

went back and forth between two different judgments for two different ratio

sizes (e.g., L(E)/(L)E/(E)(E) ) or made some clearly inappropriate

judgments for the different ratio sizes (e.g., L(S)/(L)E/(E)S ). Thus,

their patterns provided less evidence that they knew how to adjust their

response as a function of ratio differences.

The last group of children gave no evidence of realizing that size

differences could compensate for intensive differences since !), never

said that the two objects "could be equal" in weight ( # of dots) at any

point. Instead, they showed one of three patterns.: picking the larger

objet on at least five of the six items, picking the smaller object as

heavier on at least five of the six items, or oscillating between these two

judgments in apparently unprincipled fashion (e.g., L(S)/(L)(S)/(L)S).

Consequently this pattern is called the no compensation pattern.

Table 5 presents children's pattern of response to compensation items

for both tasks. There were two matched groups of children: those who had

the steel/aluminum problems first and the computer displays second and

those who had the reverse order of presentation. Results are presented

separately for the two groups because order of presentation had dramatic

effects for the steel and aluminum task. When children had the steel and
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aluminum problems first, only 5 out of 16 children showed patterns that

were clearly sensitive to ratio differences with the metal pieces.. In

contrast, 14 out of 16 of children had exact compensation or ratio

sensitive patterns on the steel and aluminum problems when they were

presented after the computer problems (X
2=10.5, d.f.=1, p=<.01). Order of

presentation did not affect performance on the computer problems: the

majority of children had ratio sensitive or exact compensation patterns

regardless of order (X2 =2.12, n.s.). For the children who had the steel

and aluminum problems first, the computer problems were clearly easier: 13

out of 16 had more sophisticated patterns on the computer problems, while 3

had the same pattern on both. No child had a more sophisticated pattern on

the steel and aluminum problems than on the computer problems (Sign test,

p < .01). In contrast, there was no difference in difficulty in the two

types of problems for the chidren who had the computer problems first: 9

out of 16 had the same pattern on both, 3 had more sophisticated patterns

on the computer problems, and 4 had more sophisticated patterns on the

steel and aluminum problems (Sign test, n.s.).

.
Table 6 shows children's pattern on the computer model problems as a

function of grade. Children's performance or the computer problems at all

ages was remarkably good. Only two children--both second graders--had

patterns which indicated that they were not making compensation judgments.

Significantly, these were the only two children who had not talked of the

differences between red and green shapes in terms of an intensive quantity

(they had said the greens had triangles, the reds dots, see Table 3). The

majority of children at every age showed at least ratio sensitive patterns.

Exact Compensation patterns were common, however, only among the grade 4

and 6 children.
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Table 7 shows children's patterns on the steel and aluminum problems as

a function of grade and order of presentation. Children's performance at

every grade is worse when one considers the group that had the steel and

aluminum problems first. Indeed half the second graders (and one older

child) had " no compensation" patterns--indicative of failure to understand

the intensive quantity. All these children had
talked simply of steel as

being heavier in their spontaneous comments. Further, ratio sensitive

patterns were rare among grade 2 and 4 children. Children's performance on

the steel and aluminum problems was much better for the group which had

these problems after the computer problems. In this case only 1 second

grader showed a no compensation pattern and 14 of the 16 children attended

to ratio differences in understanding the compensation. This suggests that

experience with computer problems both helps the child to think about the

differences between steel and aluminum as an intensive one and to think

more precisely about the magnitudes of the intensive quantities.

Justifications of predictions

Analyses of children's
justifications of compensation items provide

further support for these conclusions and gives insight into the actual

strategies children were using in solving the compensation problems.

Justifications were found to fall into six mutually exclusive categories:

(1) correct multiplicative rule (i.e., "the red needs to be three times the

size of the green to be equal"); (2) incorrect multiplicative rule (e.g.,

"the steel is double the aluminum in weight; Al needs to be two times as

big to weigh the same"); (3) direct estimation of the number of dots in

both shapes either by counting (imaginary dots) or multiplying (imaginary)

rows and columns (used only for computer problems); (4) comparison to a

remembered standard (e.g., "this is smaller than the one before; it would
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have to be bigger to be equal"); (5) consideration of a trade-off between

the two quantities (e.g., "even though the aluminum is bigger, the steel is

heavier") and (6) consideration of only one quantity at a time (e.g., "It's

bigger"; "steel is heavier"; or "the green has bunches").

Table 8 shows children's justifications on the computer model problems

as a function of grade. These justifications of computer problems revealed

a great deal of understanding of how the extensive and intensive quantity

compensate. The most common justification, especially among older

children, was to give a correct multiplicative rule. Two additional

children attempted to give a multiplicathie rule, but came up with the

wrong magnitude. (2x instead of 3x--both had had the steel and aluminum

problems first). Another common strategy on the computer problems was to

attempt to directly estimate the # of dots in each shape: younger children

counted imaginary dots while older children multiplied imaginary rows and

columns. These kinds of justifications--all dealing with specific

magnitudes or counts--involve 50% of the G2 children, 60% of the G4 and 70%

of the G6. Most of the other children mention a trade-off between both

quantities or make an explicit comparison to a remembered standard. Only

four children simply appealed to one quantity in their justifications.

The Justifications on the steel and aluminum problems are examined as a

function of the order of presentation (see Table 9). Children who had the

steel and aluminum problems first showed less sophistication in their

justifications. No child gave a correct multiplicative rule or attempted to

make a direct estimation of the magnitude of the weights. A few formulated

an incorrect multiplicative rule and a couple more attempted to make a

comparison to a remembered standard. Most commonly, however, they showed

the least sophisticated justification of talking about only one quantity at
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a time.

In contrast, the children who had the steel and aluminum problems

second were able to articulate greater understanding. Four gave the correct

multiplicative rule, two gave incorrect rules, and four more made

comparisons to a remembered standard. Only three children made reference to

a single quantity. Thus, in both patterns and justifications, the children

with the computer model problems first showed greater understanding of

these problems.

A final analysis revealed that there was a clear relation between

children's patterns of judgments and their Justifications. For both tasks

children with perfect patterns gave correct multiplicative rules and

children with no compensation patterns referred to only one quantity.

Further, on the steel and aluminum problems, children with ratio sensitive

compensation patterns typically gave Justifications in terms of an explicit

rule or in terms of a comparison to a remembered standard, while children

with non-systematic compensation patterns at best mentioned the trade-off

between quantities. There was no systematic difference in justification

type for these two patterns on the computer patterns; children typically

gave sophisticated justifications for both patterns.

Convictions: Weight, Density, Analogies

In the final interview, children were asked questions which probed

their conceptualization of weight and density. They were also asked

whether they saw any similarity between the computer and steel and aluminum

problems.

Children's conception of weight

Five aspects of children's conception of weight were probed. These

included their belief: (1) that a large scale object (i.e., a ball of
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playdough) weighed something; (2) that this object weighed something even

when they were not holding it; (3) that this object weighed the same amount

when flattened into a pancake or (4) divided into pieces, and (5) that even

a small piece of this object weighed something. Table 10 shows the number

of children at each grade level who gave evidence of holding each of these

beliefs.

The majority of children at each grade level gave evidence of correctly

holding the first four beliefs about weight. In contrast, there were

dramatic changes in answer to the question about whether a small piece of

playdough weighed anything. Only 25% of the grade 2 children said that it

did while 90% of the grade 6 children agreed with this this statement

(X
2=9.4, d.f.=2, p=(.01). Children's justifications of their answers to

these questions provide clues as to the meaning of this shift. Children

who said the small piece of playdough weighed something almost always

justified their answer by saying that "everything weighs something" or

"it's matter" or "it's still something". Further, many of these children

had articulated this viewpoint earlier in the interview as well. In

contrast, those who denied it would weigh anything had not made such

statements earlier in the interview. When they got to the small piece of

playdough question, they simply said "it is too small to weigh anything".

Thus, this question about whether a small piece of playdough weighs

anything seemed to act as a probe of their belief that weight is a

fundamental property of matter; older children believe that it is while

younger children do not.

Children's conception of density

Children's conception of density was probed in the final interview by

asking children to explain why a piece of steel was heavier than a piece of
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aluminum the same size. They were also asked to pretend that they could

look inside the tiniest pieces of steel and aluminum and to make a drawing

of what it might look like inside.

Table II shows the number of children at each age giving drawings of

different types. A common type of drawing among the G6 children was to

draw for each substance little particles which differed in terms of how

densely packed they were. This kind of representation was rarely drawn by

the younger children. Instead, younger children usually gave one of three

other types of drawings/explanations: (I) drawings which portrayed steel

and aluminum as solid but differing in color; (2) drawings in which steel

is portrayed as solid and aluminum is portrayed as hollow inside, or in

which steel is shown to be filled with something heavy (i.e., a heavy

liquid or bricks) while aluminum is filled with something light (i.e.,

cotton balls); and (3) drawings in which steel is portrayed as solid while

aluminum is permeated with air holes. In all these drawings, materials were

portrayed as essentially solid masses which at most can be hollowed out or

have air holes. There was no hint of a belief that matter is essentially

particulate instead of continuous. Further, many of the children did not

think of steel and aluminum as homogeneous materials. Some children made a

clear distinction between the outer appearance and inner composition of

materials. Steel might be solid on the outside but filled with a liquid or

bricks on the inside; aluminum might be solid on the outside but hollow or

filled with cotton balls on the inside. One child even explained that

steel was heavier because there was a small piece of aluminum on the

Inside.

Overall, children at every age appealed to intensive differences

between steel and aluminum in their drawings (color differences, empty/full
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differences, differences in dot crowdedness). However, there were three

respects in which young children's conception of density differed from

older children's. First, young children did not assume matter is

fundamentally particulate whereas older children did. Second, young

children frequently failed to represent materials as homogeneous whereas

older children did not. Finally, younger children focused on intensive

differences which were not quantities (red/green; empty/full) while older

children focused on intensive differences which were quantifiable

(crowdedness of dots). Significantly, all four children who had perfect

patterns on the steel and aluminum problems (predictions task) portrayed

density differences in terms of variations in particle density in their

drawings. Further, ali the children who gave these kinds of particulate

drawings had given evidence of believing that weight is a fundamental

property of matter.

Children's ability to see analogies between the two tasks.

Several children (2 second graders, and 1 fourth and and 1 sixth

grader) spontaneously commented on the similarity between the two

prediction tasks when the second task had been presented. At the end of the

interview, all children were probed to determine if they could see the

similarity between the two tasks. Children were first probed indirectly.

They were asked "Do these computer shapes remind you of anything?" and then

if there was no answer, "Do you see any connection between these shapes and

the steel and aluminum pieces?" "What xind of connection?" They were then

probed very directly: they were told that one of the shapes was like a

"steel piece and one like an aluminum piece and were asked to make the

match.

Table 12 shows the number of children at each grade level who were able
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to articulate the connection between the two tasks both for the more

open-ended probes and the directed match. Virtually all the children could

see the analogy when asked to make a directed match. Further, the majority

of grade 2 and 6 children were able to articulate the analogy in more

open-ended questioning as well. However, articulation of the analogy does

not always imply acceptance of the analogy. Indeed many of the grade 2

children had theories of matter which were at odds with taking the analogy

seriously.

Conclusion

`There were three purposes of the present study: (1) to determine how

elementary children spontaneously conceptualize the density of materials;

(2) to determine if they could understand the intensive quantity presented

in computer displays better than the density of materials; and (3) to

determine If they could understand the parallels between the computer

displays and the steel and aluminum objects.

The results suggested that some second graders may have difficulty

distinguishing density from weight, but by grades 4 and 6 this is generally

not a problem for children. The prediction problems in which size and

density inversely vary directly tests whether children distinguish weight

from density. These problems require that the child realizes that the

difference between steel and aluminum is an intensive one. If they realize

the difference is intensive, then It follows that extensive differences

between two objects can compensate for intensive differences: a large

aluminum piece can equal a small steel piece in weight. However, if
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children think of the difference as an extensive one (i.e., steel objects

are absolutely heavier than aluminum objects), then they will not

understand that size differences can compensate for weight differences.

Instead, children should be pPrplexed by these problems and forced to

consider one generalization at a time. When they consider their

generalization about the weight differences between steel and aluminum,

they should predict that the steel piece will be heavier. When they

consider their generalization that big things tend to be heavy, they should

predict that the large object will be heavier. We found that half of the

second graders (among those who had the steel and aluminum problems first)

never made the judgment that the large aluminum piece could equal the small

steel piece in weight on any of the compensation problems: one

systematically picked the small steel piece as heavier, one systematically

picked the large aluminum piece as heavier, and one oscillated between

picking the bigger piece and small piece in no principled manner. Further,

these children only referred to one quantity in Justifying their

judgments--the one they had based their judgment on. Thus, there is no

evidence from either their justifications or patterns of Judgment that they

realize the two quantities can compensate. In contrast, all but one of the

grade 4 and 6 children made the judgment that a large aluminum piece could

equal a small steel plePP in weight. Further, the majority indicated in

their Justifications that they were simultaneously considering both

quantities and realized that they could compensate.

There were, however, limitations in the older child's conception of

'density. These limitations were revealed in two ways. First, in their

pattern of judgments and justifications on the predictions task; and

second, in their drawings portraying the essential differences between very
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small pieces of steel and aluminum. Consider first their responses in the

predictions task. Among the children who had the steel and aluminum

problems first, few grade 2 and grade 4 children had patterns that showed

they were systematically taking ratio information into account in making

judgments about how size and density compensate. Further, these children

typically do not give justifications involving an explicit multiplicative

rule. Instead, they either comment on only one quantity or they simply

refer to the fact that the two quantities can compensate (i.e., "although

the aluminum is bigger, the steel is heavier, so they could be equal").

Thus, they are taking a more qualitative than quantitative approach to

these problems: they are noting that the aluminum is bigger than the steel

but not worrying about how mach bigger. Similarly, they are noting that

the steel is heavier than the aluminum, but not worrying about how much

heavier.

The drawings of the grade 2 and 4 children also reveal some of the

limitations in their conceptions of the densities of materials. There are

three main types of drawings produced by these children: 1) drawings which

portray steel and aluminum as solid but differing in color; 2) drawings

which portray steel as full and aluminum as hollow or filled with a lighter

substance/or object; and 3) drawings which portray steel as solid and

aluminum as essentially solid, but with some air holes (a la Swiss cheese).

While all three types of drawings are depicting an intensive difference

between steel and aluminum, none of them is explicitly representing an

Intensive quantity. Rather, they all are categorical differences: dark

color/light color, empty/full, full/air holes. Thus, although children's

models of density help them to see its intensive aspect (and hence

distinguish density from weight), they do not help them see it as a
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quantity. These same children (those who were presented with the steel and

aluminum problems first) had a much better understanding of the intensive

quantity in the computer displays. This better understanding was revealed

in several ways: by the way they talked about the quantity and by their

patterns of performance and justifications on the predictions task. Three

of the four children with no compensation patterns on the steel and

aluminum problems had ratio sensitive compensation patterns on the computer

problems. The seven children with non-systematic compensation patterns on

the steel/ aluminum problems also moved up to ratio sensitive compensation

patterns with the computer displays. Finally, three of the four children

who had shown ratio sensitive compensation patterns with the steel and

aluminum problems, now showed exact compensation problems with the computer

displays. This more sophisticated performance with the computer problems is

associated with their having a more precise way of talking about the

intensive quantity. All but one of the children saw the red and green

shapes as differing in an intensive quantity.

Why do these children do better with the computer problems than with

the steel and aluminum problems? The improvement cannot be a nonspecific

order or practice effect. If children did better with the computer

problems simply because they came second, then one would expect that the

children who had the computer problems first would do worse. However, the

two groups performed equivalently (note: these two groups had been matched

by the teacher by ability level, making it less likely that one group was

simply "more sophisticated". ) We propose that the reason children do

better: with the computer problems is that the intensive quantity is

directly represented in the computer displays in a form distinct from the

two extensive quantities end in a form lending itself to quantification. In
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contrast, the only quantities which are directly perceptually available in

the steel and aluminum task, are weight and size. Thus, the child needs to

construct the quantity of density from knowledge of the weights of two

equal size pieces. Further, the models of density the young child has

available (because of conceptions of matter in which the notion of density

is embedded) do not help him to see it as a quantity. The models simply

reinforce its intensive aspect. Children this age are, however, capable of

understanding models which do represent density as an intensive quantity.

This suggests, then, that their understanding of density could be

significantly enhanced by presenting them with the computer displays and

teaching them about the particulate model of matter.

In fact, the present study provides some direct ttvidence that

experience with the computer simulation can help students with steel and

aluminum problems. In particular, when children had the steel and aluminum

problems after the computer problems, there was no longer an advantage for

the computer display tasks. Children perform at a high level on both tasks.

There are at least two reasons specific experience with the computer

problems may enhance children's performance with steel and aluminum .

First, it provides them with experience focusing on an intensive quantity

which is easier to conceptualize (i.e. not confusable with an extensive

quantity) and with practice co-ordinating this intensive quantity with an

extensive quantity. This may prime children to focus on density as an

intensive quantity as well. Second, it provides them with the opportunity

to come up with a specific strategy for solving the problem: to check if

the red shape is three times bigger than the green shape. This specific

strategy is directly applicable to the steel and aluminum problems since

their densities are in a 3 to 1 ratio as well. Note that in either case for
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transfer to occur, it is necessary that the child sees some analogy between

the problems. Direct evidence that the child does have the capacity to see

relevant analogies between the two systems came from the last nuestions in

the Interview. In particular, we asked children both a more open-ended

question ("Do you see some connection between the computer shaprs and the

steel and aluminum pieces? What connection? ") and a more directed question

("Do you think the steel and aluminum piecescould look like this inside?

Which one would be the steel? Why do you think that? ") to assess their

understanding of the analogy. The results showed that at all ages children

were aware that the green shape was more like steel, because having more

dots is like being heavier. Further, both the G2 and G6 children typically

articulated this analogy before they were given the more directive probe.

The findings of the present study sugaest, then, that it Is easier for

children to conceptualize the intensive quantity in the computer displays

than to conceptualize density. Further, there was evidence that Experience

with the computer displays may help children to think about density more

clearly as an intensive quantity. We do not, however, think that this

brief experience with the computer problems brought Phout a deep

re-organization in children's conception of density. Children's existing

conceptions of density were sufficient for them to see some analogy between

these two systams. At the same time, their existing conceptions of matter

and material kind probably prevented them from regarding those analogies as

deep ones. In particular, most grade 2 children and many grade 4 children

as well did not yet regard weight as a fundamental property of matter.

Furth'er, virtually all of th' regarded matter as essentially continuous

rather than particulate.

One question for future research is wh_ther elementary children can be
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taught to take the computer displays as a model of density. This would

involve making basic changes in their conceptions of matter and material

kind, which is notoriously hard to do. Another question is to what extent

children need to take the computer displays as a model of density in order

for them to be helpful as a pedagogic tool. Our present results suggest

that it may not be necessary for children to take the displays as a formal

model of density in order for them to be helpful since grade 2 children

benefited as much, if not more from the experience than G6 children.

Indeed, the reverse might even be the case: experience with using the model

to successfully solve density related problems (i.e., problems such as

those used in the present study; or sinking and floating problems, where

the densities of objects are directly represented in computer displays and

where there is a dynamic component as well) may provide the child with some

motivation for taking the particulate model of density seriously.



Table 1

Test item types:
Steel/aluminum and computer model tasks

Compensation problems:size and density vary inversely

Tyne Definition Symbol
1

Dimensions2

1 Larger object is hea-
vier/has more dots

11 Both objects equal in
weight/number of dots

111 Smaller object is hea-
vier/has more dots

Non-compensation problems

Type

IV

Definition

Size constant/
density varies

V Size and density
covary

V1 Density constant/
size varies

41111.1MM

Symbol
1

II

b) 5:1 c) 11.6:2.5

f) 2.9:1 g) 11.6:4

i) 7:4 j) 4:2.5

Dimensions2

1) m) 4:4

o) 1:4 p) 5:6

r) 2.5:1 s) 11.6:5

1

Empty boxes stand for aluminum (or red shapes filled with single dots);
full boxes stand for steel (or green shapes filled with clusters of dots).
The pairs depict relative size but are not to scale. Single underlining in-
dicates heavier weight (or more dots); double underlining indicates equali-
ty of weight (or of number of dots).

2The letters correspond to the letter of the items on the interview proto-
cols in the Appendix. The numbers refer to inches for the metal pieces and to
rows for the computer model;the fractions were rounded to the next higher num-
number in the case of rows.
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Table 2

Number of subjects by grade, sex and ability level

2

Male Female

Grade

Female

6

Male Female

4

Male
(n=6) (n=6) (n=5) (n=5) (n=5) (n=5)

Ability

Low 2 2 - 2 2 2

Average 2 2 2 - 2 2

High 2 2 3 3 1 1
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Table 3

Computer analogs:

Language used in describing the difference

between red and green shapes

Explanation of difference

2

(n=12)

Grade

6
(n=10)

4

(n=10)

Green has triangles; 2 0 0

Red has dots

Green has 3 dots; 1
1 0

Red has 1 dot

Green is in bunches
(dots closer together);

3 3 3

Red in singles
(dots spread out)

Green has 3/bunch; 6 6 7

Red has single dots
or 1/bunch



Table 4

Concrete materials:
Language used in describing the difference

between steel and aluminum

Explanation of difference

Steel is heavier

Steel is fuller /stronger

Steel is a heavier

material/substance

Steel is a denser

substance/material

Grade

2

(n=12)

4

(n=10)

6

(n=10)

8 1 0

3 3 3

1 6 4

0 0 3
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Table 5

Response Patterns as a function of
task and order of presentation

Response pattern

Order of presentation

first

COMP
(n=16)

Steel and aluminum first

St & Al Comp

(n=16) (n=16)

Computer

St & Al

(n=16)

Exact compensation 1 5 3 3

Ratio sensitive
compensation

4 10 11 9

Non-systematic
compensation

7 0 1 3

No compensation 4 1 1 1
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Computer model task:
Response patterns as a function of grade

2

(n=12)

Grade

6

(n=10)
4

(n=10)

Response pattern

Exact compensation 1
3 4

Ratio sensitive compensation 8 7 4

Non-systematic compensation 1 0 2

No compensation 2 0 0



r

Table 7

Steel and aluminum task:
Response patterns as a function of

order of presentation and grade

Steel and

Order of presentation

firstaluminum first Computer

Grade

2 4 6 2 4 6

(n=6) (n=5) (n=5) (n=6) (n=5) (n=5)

Response Pattern

Exact compensation 0 0 1 0 1 2

Ratio sensitive

compensation

1 1 2 5 3 3

Non-systematic
compensation

2 4 1 0 1 0

No compensation 3 0 1 1 0 0



Table 8

Computer model task:
Justifications as a function of grade

Justification

2

(n=12)

Grade

6

(n=10)
4

(n=10)

Correct rule 1 5 4

incorrect rule 1 1 0

Direct estimation
of number of dots

4 0 3

Comoarison to remembered

standard

1 0 1

Trade-off between 2

quantities

2 4 1

One quantity only 3 0 1

9
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Table 9

Steel and aluminum task:

Justifications as a function of order of presentation and grade

Steel and

Order of presentation

firstAluminum first Computer

Grade

2 4 6 2 4 6

(n=6) (n=5) (n=5) (n=6) (n=5) (n=5)

Justification

Correct rule 0 0 0 0 1 3

Incorrect rule 1 1 1 0 2 0

Comparison to a
remembered standard

0 0 2 3 0 1

Trade-off between
two quantities

1 3 0 1 1 1

One quantity only 4 1 2 2 1 0



Table 10

8eliefs about the weight of piece of playdough

as a function of grade level .

Belief

2

(n=12)

Grade

6

(n=10)
4

(n=10)

Large piece of playdough

weighs something

9 8 10

Playdough has weight

even when not holding it

8 9 9

Playdough weighs same

even when flattened

8 8 10

Playdough weighs same

when divided

10 8 9

Small piece of playdough
weighs something

3 5 9



laule 11

Types of orawings as a function of grade level

Type of orawino

2

(n=12)

Grade

6

(n=10)
4

(n=10)

Color or surface 3 3 1

appearance

Empty/full 3 3 1

Solid/air holes 2 1 1

Particle density 0 2 5

Other 4 1 2
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Table 12

Number of children who see appropriate

analogy as a function of grade level

Grade

2

(n=12)

4

(n=10)

6

(n=10)

Type of probe

Open -ended probe
9 4 7

Directed match
10 10 9
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FIGURE 1

Purple dots Green dots
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The problem of finding comparable areas
from which to extract a ratio.

a) the dots serve to define the boundaries of the area (incorrect)

b) when the dots are contained in the center of an imaginary box, the

areas are seen to be not equivalent

c) the number of boxes containing green dots needs to be increased to

make the areas comparable
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FIGURE 2

Print-out from Computer Display:

A. Outlines and filled-in shapes

for compensation problem type I

(Red shape has more dots)

Screen 1

LJ
RED GREEN

Screen 2

amows s.

INw=16.

RED 53 GREEN



FIGURE 2(ct'd)

...

Print-out from Computer Display:

B. Outlines and filled-in shapes

for compensation problem type II

(Shapes have equal number of dots)

Screen 1

RED
Screen 2

RED

56

GREEN

.. ..

il

1

GREEN



FIGURE 2 (ct'd)

Print-out from Computer Display:

C. Outlines and filled-in shapes

for compensation problem type III

(Green shape has more dots)

Screen 1

RED

Screen 2

. . .

.

RED

57

GREEN

GREEN



FIGURE 2 (ct'd)

Print-out from Computer Display:

D. Outlines and filled-in shapes

for non-compensation problem type IV

(Green shape has more dots)

Screen 1

RED

Screen 2

1: 1
RED 58

GREEN

.

:".

GREEN



FIGURE 2 (ct'd)

Print-out from Computer Display:

E. Outlines and filled-in shapes

for non-compensation problem type V

(Green shape has more dots)

RED

Screen 1

Screen 2

E
GREEN

. ,

.

.

. . . .

I

RED

5
GREEN

9



FIGURE 2 (ct'd)

Print-out from Computer Display:

F. Outlines and filled-in shapes

(for non-compensation problem type VI

(Large shape has more dots)

GREEN

1

O

1

GREEN

Screen 1

Screen 2
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APPENDIX

List of interview protocols

A. Steel and Aluminum Preliminaries

6. Steel and Aluminum Problem Set

C. Computer Model Preliminaries

D. Computer Model Problem Set

E. Playdough and Probe.
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A. STEEL AND ALUMINUM PRELIMINARIES

stem a.

GRADE: BOY / GIRL DATE:

I'LL BE SHOWING YOU SOME METAL PIECES AND I WANT YOU TO LOOK AT THEM VERY

CAREFULLY.

NOW I'D LIKE YOU TO TAKE THESE TWO PIECES AND TELL ME IF THEY WEIGH THE

SAME' (Hand the pieces to the child)

Yes /. No

. If no ask WHICH IS HEAVIER (S / A )

Shrew balance scale and explain:

Do YOU KNOW WHAT THIS IS CALLED? WHAT IS IT USED FOR? HOW DOES IT WORK? WE

USE IT TO WEIGH THINGS. THIS HAND TELLS US HOW HEAVY THINGS ARE. THE FARTHER

IT GOES, THE HEAVIER THINGS WEIGH.

LET'S PUT THESE PIECES ON THE SCALE AND SEE HOW MUCH THEY WEIGH. DO THEY

WE:GL; THE SAME?

Yes (incorrect response, show child)

No . . WHICH IS HEAVIER . . S / A

AWE THEY THE SAME SIZE? `4s. / No . . . (show they are same)

THESE PIECES ARE THE SAME SIZE BUT THEY DO NOT WEIGH THE SAME. HOW CAN

THAT BE?

CAN YOU TELL ME WHAT YOU MEAN . . . (Use child's words).
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THESE PIECES ARE MADE OF DIFFERENT KINDS OF STUF= (MATERIALS). DO YOU KNOW
THE NAMES OF WHAT THEY ARE MADE OF ?

THIS GNE IS MADE OF ALUMINUM AND THIS ONE IS MADE OF STEEL.

CAN YOU TELL ME WHAT IS DIrrrLtNT ABOUT STEEL AND ALUMINUM?

YOU CAN SEE THAT THE STEEL ONE IS DARKER AND THE ALUMINUM IS LIGHTER . WE
ALSO HAVE PUT THESE DOTS ON TO HELP. THE BLUE DOT IS ON THE STEEL PIECES
AND THE YELLOW DOT ON THE ALUMINUM.

11 (d)
st,?o b.

al) NOW, I WANT YOU TO LOOK AT THESE TWO PIECES, BUT I DON'T WANT YOU TO LIFT
.........

.......6
THEM UP UNTIL LATER.

pi = 8 ONE IS MADE OF STEEL AND ONE IS MADE OF ALUMINUM, JUST LIKE THE FIRST TWO
WE SAW. CAN YOU SHOW ME WHICH ONE IS STEEL AND WHICH ONE IS ALUMINUM ?.
(Show Colnr, marker').

DO YOU THINK THAT THESE TWO PIECES COULD WEIGH THE samF,

Yes / No if no ask:

.WHICH IS HEAVIER ? S / A

WHY DO YOU THINK SO?

LETS SEE ih.-3V4. child out them nn ttwe scali. )

DO THEY WEIGH THE SAME?

Yes / No . . (if no help them see that they are the same )

ARE THEY THE SAME SIZE ? Yes / Nn
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NAME:

B. STEEL AND ALUMINUM PROBLEM SET

GRADE BOY/GIRL DATE:

For oresentation 1 thrnumh 12 ASV the frOlAwinet

DO YOU THINK THESE COULD WEIGH THE SAME ? If NO, ask WHICH IS HEAVIER ?

..:Ur

0 *1. HERE ARE TWO PIECES MADE OF ALUMINUM
COULD THESE TWO PIECES WEIGH THE SAME ?7 Yes / No

.. if no ask WHICH IS HEAVIER tAll / short

(b.) #2. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE
5" COULD WEIGH THE SAME? -

l#

Yes / NA

.. if no ask WHICH IS HEAVIER ? steel / aluminum

110

011111

'U

A

113. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE
COULD WEIGH THE SAME ?

Yes / Nn
.. if no ask WHICH IS HEAVIER ? steel / aluminum

WHY ?

114. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE
COULD WEIGH THE SAME ?

Yes / No
.. if no ask WHICH IS HEAVIER ? steel / aluminum

#5. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE
COULD WEIGH THE SAME ?

Yes / No
.. if no ask WHICH IS HEAVIER ? steel / aluminum

#6. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE
COULD WEIGH THE SAME ?

''Yes / No
.. if no ask WHICH IS HEAVIER ? steel / aluminum
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Probe Question

(place preliminary pieces (S: B D F / A: I M co in front of child)

CAN A PIECE OF STEEL AND ALUMINUM WEIGH THE SAME ? Yes / No

.. If Nn say :LETS MAKE SURE. CAN YOU FIND A PIECE OF ALUMINUM
THAT WEIGHS THE SAME AS THIS PIECE OF STEEL?
(place piece B of steel in front of child
(help child to select S/A Pair"D/M" or "O/0")
(Weigh the pieces)

.. If Yes say: CAN YOU SHOW ME WHICH PAIRS OF S/A PIECES WEIGH THE SAME
picks :S: :A:

LETS WEIGH THEM AND SEE. DO THEY WEIGH THE SAME? Yes / No

. . if Yes say YOU WERE RIGHT. CAN YOU FIND ANOTHER PAIR THAT WEIGHS
THE SAME ? (check on scale)
picks :S: :1U (B/M or D/0)

.. if NA say THEY DON'T WEIGH THE SAME. CAN YOU FIND ANOTHER PAIR THAT
DO WEIGH THE SAME? (help child as necessary to find pair)
picks :S: :A: (B /M Or D/0) (check on scale)

CAN YOU FIND ANOTHER PAIR THAT WEIGHS THE SAME
?icks :S: :A: (B/M or D/0) (check on sc.11,i.)

HOW CAN YOU KNOW THAT THIS PIECE OF ALUMINUM WEIGHS THE SAME AS THIS PIECE
OF STEEL (point to first pair), AND THAT THIS PIECE OF ALUMINUM AND THIS
PIECE OF STEEL WEIGH THE SAME (point to second pair)'

(point to 2"steel (B) and say :

YOU SAID THAT THIS ONE (B) WEIGHS THE SAME AS THIS ONE (M).
COULD THERE BE ANOTHER PIECE OF ALUMINUM THAT WEIGHS THE SAME AS THIS PIECE
OF STEEL" "Be')

Yes / No

. if Yes say WHICH ONE(S)

place 2"steel "B" and 2" aluminum "I" in front of child and say:

HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. HOW MUCH HEAVIER DO YOU
THINK THE STEEL IS THAT THE ALUMINUM ? HOW DO YOU KNOW THAT',



ZE ((v)
5,,

THESE PIECES WEIGH THE SAME BUT THEY ARE NOT THE SAME SIZE. HOW CAN THAT

BE?--

(From here, child must answer questions haters chect'ina).

step C.

HERE ARE TWO PIECES OF STEEL. COULD THESE PIECES WEIGH THE SAME?

Yes / if No

. WHICH ONE IS HEAVIER tall / short

HOW COME / WHY DO YOU THINK (child's words)

LETS SEE IF YOU'RE RIOHT (i of Child handle nieces and weqh theml.

if right say: YOU WERE RIGHT

if wrong say: THE SCALE SHOWS THIS ONE IS HEAVIER. HOW CAN THAT BE

steo d.

etoloration eriod. Mawimum 3 minutes. Recnrd child's olay. Time:

Use oreliminarY pieces only.

I HAVE SOME MORE PIECES TO SHOW YOU. BUT BEFORE WE DO THAT, I'LL LET YOU

LOOK AT THESE PIECES A LITTLE LONGER.YOU CAN HOLD THEM TN YOUR HAND OR PUT

THEM ON THE SCALE IF YOU LIKE. (record child's respons., )
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Co)

A 6

*7. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE

COULD WEIGH THE SAME ?

Yes / No.

.. if no ask WHICH IS HEAVIER ? steel / aluminum

*8. HERE I-0 A PIECE OF STEEL AND A PIECE OF ALUMINI.O. DO YOU THINK THESE

(0)1/4" COULD WEIGH THE SAME ?

2,54 Yes / Nn
if no ask WHICH IS HEAVIER ? steel / aluminum

P
C;

WHY ?

0)
4,n

G A

*9. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THIFSE

COULD WEIGH THE SAME ?

Yes / No
.. if no ask WHICH IS HEAVIER ? steel / aluminum

WHY

*10. HERE ARE TWO PIECES OF STEll. DO YOU THINK THESE TWO P :ECES COULD

WEIGH THE SAME ?

Yes / No
.. if no ask WHICH IS HEAVIER ? tall / short.

*11. HERE IS A PIECE OF ALUMINUM AND A PIECE OF STEEL. DO YOU THINK THESE

TWO PIECES .2,OULD WEIGH THE SAME ?

Yes / No
if no ask WHICH IS HEAVIER ? steel / aluminum

WHY

*12. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM.
TWO PIECES COULD WEIGH THE SAME ?

DO YOU THINK THEE:

Yes / No
.. if no ask WHICH IS HEAVIER ? steel / aluminum
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NAME:

C. COMPUTER MODEL PRELIMINARIES

GRADE: BOY/GIRL DATE

I'M GOING TO BE SHOWING YOU SOME SHAPES ,4ND I WANT YOU "t0 LOW AT THEM VERY
CAREFULLY. HERE IS THE FIRST ONE. -

step a.

press (PP+)

ONE OF THESE SHAPES HAS A RED OUTLINE AND THE OTHER HAS A GREEN OUTLINE.
BOTH OF THEM ARE FILLED WITH DOTS.

DOES THE RED SHAPE HAVE THE SAME NUMBER OF DOTS AS THE GREEN SHAFE ?

Yes / No

. . if No say WHICH ONE HAS MORE red I glItta

. if Yes say YES, THEY DO HAVE THE SAME NUMBER OF BUNCHES (CLUSTERS), BUT
THE GREEN ONE HAS MORE DOTS IN A BUNCH/CLUSTER THAN THE RED
ONE. DO THEY HAVE THE SAME NUMBER OF DOTS ?
(help child count the dots to see the preen one has more)

ARE THEY THE SAW.7. SIZE ?

Yes / No (if no correct child)

THEY ARE THE SAME SIZE, BUT THE GREEN ONE HAS MORE DOTS. HOW CAN THAT BE ?

THAT'S RIGHT/ THEY HAVE THE SAME W JER OF BUNCHES, BUT THE GREEN ONE HAS
MORE DOTS IN A BUNCH/CLUSTER THAN THE RED ONE.

NOW I'M GOING TO SHOW YOU SOME MORE SHAPES. I'LL BEGIN BY SHOWING YOU JUST
OUTLINES OF SHAPES (press pp+) IF IT'S A RED ONE YOU MUST REMEMBER IT WILL
BE FILLED IN WITH BUNCHES THAT LOOK LIKE THIS (point to red example on card

IF ITS A GREEN ONE YOU MUST REMEMBER IT WILL BE FILLED IN WITH BUNCHES
WHICH LOOK LIKE THIS (point to green example on card)

step b.

4r press (1-0+)

MR a
HERE IS AN OUTLINE OF TWO NEW SHAPES. REMEMBER THE GREEN ONE IS ALWAYS
FILLED IN LIKE THIS (point to card), AND THE RED ONE IS ALWAYS
FILLED IN LIKE THIS (point to card ).
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DO YOU THINK THAT THESE TWO SHAPES COULD HAVE THE SAME NUMBER OF DOTS'

Yes / No
.. if no ask WHICH ONE HAS MORE DOTS green / red

WHY DO YOU THINK SO ?

LETS COUNT AND CHECK IF YOU ARE RIGHT. (press LP+)

(help them count so thev sae they have the same num6er of dots)

ARE THE SHAPES THE SAME SIZE No

THEY ARE NOT THE SAME SIZE BUT THEY HAVE THE SAME NUMBER OF DOTS.
HOW CAN THAT BE ?

step C. press (m-6,1+)

HERE ARE TWO GREEN SHAPES. COULD THESE TWO SHAPES HAVE THE SAME NUMBER OF
DOTS?

Yes/ No

.. if no ask WHICH ONE HAS MORE DOTS larae / small

WHY DO YOU THINK THAT?

LETS CHECK IF YOU ARE RIGHT 2Less (H+0+1

step d.

I'M GOING TO BE SHOWING YOU SOME MORE SHAPES, BEFORE I DO YOU CAN PLAY WITH
TH_ ,I1APES FIRST. HERE IS A CARD WHICH SHOWS YOU THE DIFFERENT SHAPES AND
THE LETTER TO PRESS TO PUT IT ONTO THE SCREEN. (leave 5 minutes for play )

record play
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Probe Questions

(place card with outlines of shapesPOMLI in front of child)

CAN A GREEN SHAPE HAVE THE SAME NUMBER OF DOTS AS A RED SHAPE' Yes / NJ

.. if NO say: LETS MAKE SURE. CAN YOU FIND A RFD OUTLINE THAT .HAS

THE SAME NUMBER OF DOTS AS THIS GREEN OUrLINE%

(place outline P+ in front of child, help child select

outline G/R pair P+/L or 0+/I; put on screen, count dots)

.. if YES say: CAN YOU SHOW ME WHICH SHAPES HA,E THE SAME NUMBER OF Doi's-.

picks :0: :R:

LETS COUNT THE DOTS AND SEE. DO THEY HAVE THE SAME NUMBER OF DOTS' Yes/No

.. if Yes say: YOU WERE RIGHT. CAN YOU FIND ANOTHER PAIR OF SHAPES THAT

HAVE THE SAME NUMBER OF DOTS? (check on screen, count dots)

picks :6: :R:

.. if No say: THEY DON'T HAVE THE SAME NUMBER OF DOTS. CAN YOU FIND

AN0111FR PAIR OF SHAPE; THAT HAVE THE SAME NUMBER OF DOTS'

(he child is needed to find nain P-6/L or 0..T.-)

picks :0: :R: (check on screen, count dots)

CAN YOU FIND ANOTHER PAIR OF SHAPES WHICH HAVE THE SANE

NUMBER OF DOTS%
picks :G: :R: (check on screen, count dots)

HOW CAN YOU KNOW THAT THIS GREEN SHAPE AND THIS RED SHAPE (pt to 1st pair)

AND THIS GREEN SHAPE AND RED SHAPE (pt to 2nd pair) HAVE THE SAME NUMBER OF

DOTS'

(point to p+ and say):

YOU SAID THAT THIS ONE (P+) HAS THE SAME NUMBER OF DOTS AS THIS ON=. COULD

THERE BE ANOTHER RED SHAPE THAT HAS THE SAME NUMBER OF DOTS AS THIS GREEEJ

SHAPE?
Yes / No

. . if Yes say WHICH ONE(S)

point to o+ and p and say:

HERE IS A GREEN SHAPE AND A RED SHAPE. HOW MANY MORE DOTS DO YOU THINK THERE

ARE IN THIS GREEN SHAPE THAN IN THIS RED SHAPE'S
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NAME:

D. COMPUTER MODEL PROBLEM SET

GRADE: MALE / FEMALE Date:

For presentation 1 through 12 ask the following: DO YOU THINK THESE HA'.',E
THE SAME NUMBER OF DOTS? If No, ask WHICH ONE HAS MORE DOT; ? -

#1 press fm HERE ARE TWO RED SHAPES. COULD THESE TWO SHAD
HAVE THE SAME NUMBER OF DOTS ?

Yes / No
if no ask WHICH ONE HAS MORE DOTS ? bin / little

t r)recc m-11- HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THESE TWO
SHAPES HAVE THE SAME NUMBER OF DOTS ?

Yes / Nn

.. if no ask WHICH ONE HAS MORE DOTS ? red/areen

#3. press m-1+ HERE IS A RED SHAPE AND A GREEN SHAPE. COULD TH=SE TWO
siJAPES HAVE THE SAME NUMBER OF DOTS ?

Yes / Nn
if no as WHICH ONE HAS MORE DOTS ? red / oreer-

WHY?

#4. press oo+ HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THESE TWO
SHAFES HAVE THE SAME NUMBER OF DOTS ?

Yes / No
.. if no ask WHICH ONE HAS MORE DOTS ? red / green

#5. pres s HERE IS A RED SHARE AND A GREEN SHAPE. COULD THESE TWO
SHAPES HAVE THE SAME NUMBER OF DOTS ?

Yes / N.
if no ask WHICH ONE HAS MORE DOTS ? red / (Meer.

#6. press h-1+ HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THESE TWO
SHAPES HAVE THE SAME NUMBER OF DOTS ?

Yes / No
if no ask WHICH ONE HAS MORE DOTS ? red / green

#7. press 0f+ HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THESE TWO
SHAPES HAVE THE SAME NUMBER OF DOTS ?

Yes / No
.. if no ask WHICH ONE HAS MORE DOTS ? red / green
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tr)

#S. press an+ HERE ARE A RED SHAPE AND A GREEN SHAFE. COUrn TH.":F TWO-
SHAFES HAVE THE SAME NUMBER OF DOTS

Yes / NA

if no ask WHICH ONE HAS MORE DOTS ?

WHY?

red / careen

49. press HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THESE TWO
SHAPES HAVE THE SAME NUMBER OF DOTS ?

Yes / No
.. if ne ask WHICH ONE HAS

/
MORF DOTS ?

WHY ?

rod / greer

410. press h+ro- HERE ARE TWO GREEN SHAPES. COULD THESE HAVE THE SAME
NUMBER OF DOTS

Yes /
.. if no ask WHICH ONE HAS MORE DOTS ? bid / small

411. press kn HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THESE HAVE
THE SAME AUMBER OF DOTS?

Yes / No

if no ask WHICH ONE HAS MORE DOTS ? red / oreen

WHY',

412. press k-#. HERE IS A RED SHAPE AND A GREEN SHAPE. COULD THEE HAVE
THE SAME NUMBER OF DOTS ?

Yes /

if no ask WHICH ONE HAS MOFE DOTS' red / areer.



NAME:

E. PLAYDOUGH AND PROBE

GRADE: BOY/GIRL DATE:

I. HERE IS A PIECE OF PLAYDOUGH.

a. DOES THIS PIECE OF. PLAYDOUGH WEIGH ANYTHING? Y/N

WHY DO YOU THINK THAT?

(if child says that the piece isn't big enough to weigh
anything, add more to the piece until the child agrees
that it has weight, before going on)

b. WOULD THE PIECE OF PLAYDOUGH STILL WEIGH SOMETHING EVEN
WHEN YOU AREN'T HOLDING IT? Y/N

HOW DO YOU KNOW THAT?

c. (change the shape of the playdough--flatten into a pancake- -
as the child watches or have the child help you)
-COULD YOU HELP ME FLATTEN THIS BALL OF PLAYDOUGH INTO A
PANCAKE. GOOD. DOES THE PLAYDOUGH WEIGH THE SAME NOW
AS IT DID BEFORE? Y/N

WHY DO YOU THINK SO?

DOES IT HAVE THE SAME AMOUNT OF STUFF IN IT AS IT DID BEFORE? Y/N

HOW DO YOU KNOW THAT?

d. (make the playdough back into a ball, and let the child hold
it) CAN YOU HELP ME AGAIN? THIS TIME I WANT TO BUT THIS
BALL OF PLAYDOUGH INTO LITTLE PIECES (have child help). DO
ALL THE PIECES TOGETHER WEIGH THE SAME AS THE BALL OF PLAYDOUGH
DID BEFORE? Y?N

WHY DO YOU THINK SO?

e. (pick up a tiny piece cf playdough). DOES THIS LITTLE
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PIECE OF PLAYDOUGH WEIGH ANYTHING? Y?N

HOW DO YOU KNOW THAT?

If no: Could it weigh a tiny bit or nothing at all?

U. a. Let's take a look at these 2 pieces of steel and aluminum (4"pair,
E & K). Do you remember that even though these two pieces are the
the same size, the steel one weighs more than the aluminum one?

What is it about ,the steel .piece- that makes it heavier/weigh more?

Can you tell me what you mean'?

b. Lets pretend we could look inside the tiniest pieces of steel and
aluminum. I want you to matte me a drawing of what you think steel
might look inside and what ynu think aluminum might look inside.

Tell me about you drawing. (code)
STEEL: (clusters / shading particles / spacing / movement
ALUM : (clusters / shading / particles / spacing / movement

c. DO YOU REMEMBER THE SHAPES WE SAW ON THE COMPUTER (show
card with dots x dots) The red shapes always had dots which
looked like this and the green shapes always had dots which
looked like this.

DO THESE SHAPES REMIND YOU OF ANYTHING? Y/N
If yes: WHAT DO THEY REMIND YOU OF?

DO YOU SEE ANY CONNECTIONS (SIMILARITIES) BETWEEN THESE
SHAPES AND THE STEEL AND ALUMINUM PIECES? Y/N

If yes: WHAT KINDS OF CONNECTIONS?

DO YOU THINK THAT THE STEEL
LIKE THIS INSIDE? Y/N

If yes: WHICH WOULD BE
WHICH WOULD. BE

AND ALUMINUM PIECES COULD LOOK

THE STEEL?1 dot cluster/3 dot cluster
Thi AL? 1 dot/ 3 dot

WHY DO YOU THINK THAT?



D 0 YOU THINK THIS HAS ANYTHING TO DO WITH THE FACT

JHAT STEEL IS A HEAVIER KIND OF STUFF THAN
ALUMINUM?

If no: WHY DO YOU THINK THAT?

SOME PEOPLE SAY THAT STEEL AND ALUMINUM PIECES
ARE EACH MADE UP OF SMALL BITS OF STUFF, LIKE
THE DOTS WE SAW ON THE COMPUTER. THINGS MADE
OF HEAVIER KINDS OF STUFF HAVE MORE BITS IN
BUNCH, BUT THEY HAVE THE SAME SPACES BETWEEN
BUNCHES. DOES THAT SEEM LIKE I' 'OD EXPLANATION
OF WHY STEEL IS A HEAVIER KIND OF STUFF THAN
ALUMINUM TO YOU?
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